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A two-band model is proposed to describe the galvanomagnetic properties in thin samples of 
transition metals or of semimetals such as bismuth which are characterized by two overlapping 
partially filled bands. The formalism proposed by Sondheimer and Wilson for transition metals 
and the Cottey model of carrier scattering at the external surfaces are used to solve size effect 
problems in a thin film subjected to a transverse magnetic field. The general case where the 
number of carriers per unit volume differs for the two bands is studied. The influence of the 
temperature is accounted for introducing a parameter x which corresponds to the fraction of 
the current carried by the conduction electrons. The results of these calculations are presented 
within the limit of low magnetic fields. Compared with the classical F-S theory, the variation 
of the Hall effect with film thickness is found to be determined by three essential parameters: 
the specularity parameter p, the ratio, y, of the number of carriers in the two bands, and the 
temperature-dependent parameter x. A large scatter of theoretical results is reported; in par- 
ticular for typical sets of values for p, x and y the size effects can be exactly opposite to those 
predicted by one-carrier models. Tentative attempts to fit previously published data on the 
basis of the present model are undertaken. Qualitative agreement is observed, the theory is 
found to be able to explain the change in the sign of the Hall coefficient with increasing 
thickness sometimes observed in bismuth films. Difficulties in controlling morphology and 
geometrical surface properties of films with various thicknesses are outlined. As a conse- 
quence, one may find here a possible explanation for quantitative differences between 
theory and experiments. 

1. I n t r o d u c t i o n  
There have been a number of experimental studies 
[1-3], on the electrical and galvanomagnetic transport 
properties of thin metal films. Examination of the 
literature shows that, in general, the results of these 
studies have been compared with the predictions of 
the geometrical surface scattering theories of either 
Fuchs-Sondheimer (F-S) [4, 5] or Cottey [6] which 
assume a simple free-electron model of the metal. But 
many works have also been published on the electrical 
properties of bismuth [7-14] or of nickel and nickel- 
based [15-17] thin films. 

Let us examine the case of the Hall coefficient, RH~, 
of films. Hoffman and Frankl [13] measured the gal- 
vanomagnetic coefficients of well-ordered bismuth 
films between 1.15 and 300 K. In the low-temperature 
region, the classical F-S theory was found to explain 
crudely the observed thickness dependence, even ifRHr 
increased with decreasing thickness more rapidly than 
that predicted by the theory. Data on transport 
properties of bismuth films published by Inoue et al. 
[12] showed a different behaviour. The Hall coefficient 
changed its sign in the range 77 to 300 K whereas the 
absolute value of RHf at 77 K decreased with decreas- 
ing thickness. This observation was in qualitative 

agreement with the measurement of RHf on bismuth 
fikns by Garcia et al. [11]. Effectively, at low tem- 
peratures, the Hall coefficient exhibited a size effect 
exactly opposite to that predicted by the F-S theory; 
RHf increased with increasing thickness. Kochowski 
and Opilski [10] also observed a similar behaviour 
when they investigated the thickness dependence of 
the Hall coefficient of thin evaporated bismuth films at 
80K. In contrast, at room temperature, Kochowski 
and Opilski reported a change in the sign of RHf 
together with changes in RHf with thickness which 
appeared to be very roughly consistent with theoreti- 
cal F-S predictions. Enhanced size effects in the ordin- 
ary Hall coefficient were observed by Ghosh and Pal 
[15] in nickel films; the departure from the F-S theory 
was particularly marked in the low thickness range. 
Chaudhuri and Pal [17] interpreted their results on the 
ordinary Hall effect in ferromagnetic copper-nickel 
films only in terms of the conduction in both the s and 
d bands; the F-S theory failed to explain the observed 
behaviour. 

It is clear from the preceding discussion that a 
comparison with the classical F-S theory or the 
Cottey model is not meaningful. Effectively, nickel is 
known as a transition metal with a partially filled d 
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band [18]; consequently, carriers of  both the s and d 
bands can contribute to the conduction processes. In 
bismuth, an interesting element belonging to the so- 
called semimetals, the electrical transport properties 
are due to a small number of electrons at the bottom 
of the conduction band and an equal number of  holes 
at the top of the valence band [19]. Thus nickel and 
bismuth are both characterized by an overlap, A, of 
the s and d bands or of the conduction band and the 
valence band and by the fact that two different types 
of carrier contribute to the galvanomagnetic effects. 
Hence models based on a single conduction band can 
fail to explain the observed size effects. Let us recall 
that a two-band model [20, 21] which consists of two 
overlapping bands of normal form is commonly used 
[22, 23] to interpret experimental results on the mag- 
netoresistance and Hall effects in bulk materials such 
as bismuth and transition metals. 

In view of the data on the thickness dependence of 
Rnf in bismuth and nickel films it was felt necessary to 
derive theoretical expressions of  the Hall coefficient of  
thin samples of semimetal incorporating a surface 
scattering model. In our solution we have chosen to 
use a method developed by Cottey [6] which leads to 
analytical expressions for the galvanomagnetic coef- 
ficients and which under the assumption of a free- 
electron model is known to give reasonable fits b f  the 
thickness dependence of the transport properties of 
thoroughly annealed metal films [3]. 

2. Theory 
2.1. Solving the transport equation 
We deal with the model in which there are two over- 
lapping partially filled bands, namely the s and d 
bands, of standard form, i.e. in each band the energy, 
W, is proportional to the square of the wave vector, k. 
Assuming that the s-d transitions are negligible, the 
behaviour of the carriers in each band remains inde- 
pendent of what happens in the other band. Now if, to 
avoid confusion, we essentially use in this paper the 
notation and the formalism proposed several years 
ago by Sondheimer and Wilson [20, 21] we can write 
the energy level in the s band as 

h21kl 2 
w - (1) 

2ms 

where k is the wave vector with components kx, ky and 
kz. ms is the effective mass of the s electron, and h is the 
Planck's constant. The corresponding relation for the 
energy level in the d band is 

m = A h2lkl2 (2) 
2ma 

where A is the band overlap and ma is the effective 
mass of  d carriers. 

Explicit expressions for the distribution functions of  
the carriers can be obtained using the Sondheimer 
formalism [20, 21]. They are 

fs = L ° -- (kxC,~ + kyCz~) #L° a w  (3) 

fa = fo  + (k~C,a + keC2a) #fa° (4) 
# W  

! 
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Figure 1 The geometry of the model. 

where C~, C~d, C2s and C2d are functions of  the energy 
W, and the subscripts s and d refer to the carriers of  
the s and d bands, respectively;R indicates the distri- 
bution function in the absence of any perturbation. 

If the background scattering and the carrier scatter- 
ing at the film surfaces are assumed to occur indepen- 
dently, Matthiessen's rule [24] applies in each band 
separately and a resultant time of relaxation can be 
defined for each type of  carrier. Let ~* and r~' be the 
total relaxation time describing the simultaneous 
background and external surface scatterings for, 
respectively, the s and d bands. Suppose now that the 
perturbing fields are sufficiently small to induce effects 
which can be represented by a first-order perturbation 
of the equilibrium distribution, the calculation can be 
carried out by introducing 

f = fo  + f~ (k )  i = s, d (5) 

in whichfs ~ (k) andfd j (k) are the small deviations from 
equilibrium caused by the external fields. Then in 
presence of an electric field, E (Ex, Ey, 0) and a trans- 
verse magnetic field, H (0, 0, H )  (Fig. 1) the Boltz- 
mann transport equations are finally expressed in the 
following condensed form 

e 
fL = h ~*(E + v /x H )  ~?f(k)ok i = s, d (6) 

where v is the velocity of either the s or the d carriers. 
Let us recall that the functions C~ and Czi (i = s, d) 

do not depend explicitly on vx and %. Thus making 
use of Equations 3 and 4, neglecting the terms contain- 
ing products of E with f l  (k) but retaining the terms 
related to the products (ctf/c~W)C~i and (6qfi/6~W)Czi, 
alternative expressions for the deviation functions f,~ 
and fs ~ are readily found to be 

ms #W 

x e(k~E, + k, Ey) + - ~  (k~G, - kyC,,) 

(7) 

m d 63W 

x - - e (kxE  x + kyEy) + --~-(kxC2d - kvC,a) 

(8) 

Now to solve the Boltzmann transport equations we 
need only to determine the functions C~i and C2~, 
comparing Equations 3 and 4 with Equations 7 and 8, 
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respectively, one obtains the following formulae 

x -  Cls - eh "c* (9a) 

(o~*Ex + Ey) 
C2s - eh c* (9b) 

m~ 1 + e,2 

for the s electrons. In a similar way expressions for C~d 
and C2d 

_ eh c* ( E~ + c~Ey Cld (1 Oa) 
md \ 1 + ~<2 ) 

C2a - md \ 1 + 7~ :~ ( 1 0 b )  

are at once also obtained. In the above equation, the 
c~* parameters are written as 

eric* 
~3 _ i = s , d  (11 )  

mi 

and with our convention take always positive values. 

2.2. Relations for the electrical current 
density and the Hall coefficient 

Before deriving the expressions for the components Jx 
and J~ of the current density J it seems of interest to 
pause here to focus attention on the definition of the 
background mean-free paths of the s and d carriers. 
Let us recall that under the assumption of a quasi-free 
model the background mean-free path of an s electron 
is given by [3, 24] 

)~0s = CosVv = Cos[2Wv/m=] L/2 (12) 

where %= is the background relaxation time and WF the 
Fermi energy. 

Turning to the carriers of the d band one can see 
that at high temperatures where a background relax- 
ation time Cod exists, we may attribute a background 
mean-free path 

)o0d = C 0 d [ 2 ( A -  WF)/md] 1/2 (13) 

to a d carrier where we have taken as our zero energy 
the bottom of the s band. Obviously there is no reason 
to assume equal background relaxation times and the 
mean-free paths for the two bands. 

As outlined in Section 1, the main feature of  the 
classical F-S theory which holds when the material 
can be regarded as an isotropic material with a single 
type of carrier is, within the limit of small magnetic 
fields, to predict a pronounced increase in various 
transport parameters such as the film resistivity and 
the Halt coefficient with decreasing film thickness, d, 
or with roughening of the film surfaces [1-3]. Because 
the F-S theory leads to analyt!cal expressions for the 
electrical resistivity of thin films in the limits only of 
very thick and very thin films an overview of the 
theoretical F-S size effect requires, in general, com- 
putational techniques. 

Moreover, it must be borne in mind that even for 
bulk isotropic material with two different types of 
carrier, the expressions for the galvanomagnetic coef- 
ficients become more complicated showing in par- 
ticular that the Hall coefficient may be very sensitive 
to small differences in the number of s and d carriers 

and to differences in the carrier mobilities. Thus we 
can anticipate some theoretical results by noticing that 
moreover the size effects in the galvanomagnetic coef- 
ficients of tin semimetal films are partially determined 
by the differences in the mean-free paths of the two 
types of  carrier. In these conditions the behaviour 
appears more and more complex and the effects of the 
carrier scattering can no longer act in many ways 
analogously to the predictions of the classical F-S 
theory. In particular, the possibility to derive approxi- 
mate expressions for the electrical resistivity and the 
Hall coefficient of  semimetal films in reduced thick- 
ness ranges which are sufficiently large to provide 
convenient fits of experimental data, seems in fact to 
be very restricted. For  these reasons, in this paper we 
opt for a Cottey-like representation of the carrier 
scatterings at external surfaces rather than for a 
representation based on the F-S model. The choice is 
motivated by the fact that in this manner we avoid 
some cumbersome numerical computations and pro- 
ceed always with analytical relations which permit a 
rapid evaluation of the galvanomagnetic coefficients. 
Moreover it is now well established that although the 
case of totally diffuse scatterings at the film surface is 
consequently omitted the Cottey model seems adequate 
[3] for partially specular scatterings, i.e. for values of 
the specularity parameter, p, greater than 0.4, and that 
its validity can be extended over the almost entire p 
range under special conditions [25]. 

At this point we must recall that in the framework 
of  the Cottey model the relaxation time, c(0), associ- 
ated with the scattering at the external surfaces 
expressed as [3, 6] 

d 
c(O) = (14) 

Ivl Icos 0l in ( l / p )  

in polar coordinates (k, 0, ~) (Fig. 1) for a carrier 
moving with a velocity v remains explicitly indepen- 
dent of the type of the carrier until one assumes that 
the phenomenological reflection parameter, p, which 
describes the average effect of roughness of  the film 
surfaces, is the same for the two types of carrier. 

Assuming further that the background and surface 
scatterings occur independently, the total relaxation 
time, c*, describing these two simultaneous scattering 
processes 

1 1 

Ci* COi 

1 

COl 

1 + - -  
c(e) 

[ c0,1v [ In ( l /p)[cos 0,1 (15) - - -  1 +  d 

(i = s, d)  

depends on the type of carrier. Here it must be pointed 
out that using the term 2(1 - p)/(l  + p) instead of  
the term In (l/p) in Equation 15 the model remains 
valid for more and more diffuse surface scatterings 
[25]. 

To calculate the galvanomagnetic coefficients and 
especially the Hall coefficient on which emphases is 
placed, we need the total electrical current J (Jx, Jy, O) 
which is the sum of those due to the two bands 
separately. 
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The calculation of the electrical density (J~, Jei, 0) 
for the two bands is classical. Starting from the 
formulae 

eh Off  d3 k 

Jxd 

with 

(16a) 

i = s , d  

eh k2yC2 i a f °  d 3k (16b) 

where for a film the functions C~i and C2i are given by 
either Equations 9 or 10 involving the respective total 
relaxation times z* and z*. 

The integration is performed in polar coordinates 
by using the usual approximate method for integrals 
involving the Fermi distribution function in which 
the integrals are expanded as an ascending series in 
(kB T/Wv) 2 for the s band and as an ascending series in 
[kB T/(A - WE)] 2 for the d-band [20, 21]. 

Retaining only the terms of zero order, it is found 
that for the d band the current density takes the forms 

sin30[E~(1 + Icos 01/#d) + ~Ey f~ 
Jxd dO 

Jo I1 + Icos 0 1 / m r  + 

(17) 

[~ sin 3 0 [ -%Ex + (1 + Icos OI/#o)Ey] 
J .  dO ~0 [1 + Icos 01/m] = + ~,] 

(18) 

where, for convenience, the size parameter, #o, is 
defined as 

d 1 
(19) 

#o - 2od In ( l / p )  

and where the field parameter ~0 is connected with the 
background relaxation time Zoo 

eHZod 
cq = - -  ' (20) 

mo 

ao~ is the contribution of the d band to the total 
background conductivity, ao 

e2 ?Id "Coo 
a00 - (21) 

md 

where n 0 is the number of vacancies in the d band. 
Carrying out the integration over the variable 0 one 

finally obtains 

= ~aoo[s~aEx + (Xd~dEy ] (22) 

= 3O-o,~[-ao~oE ~ + S~CoEy ] (23) 

m (1 - + - + + y 

×ln[ (1 -[- #dl)2 -[- ~ 2 ] 1  -k-~ 2 

- 2Co# 3 t an - '  ~ e ~  + 1 + ~;~ (24) 

= 

and 

~d ~ __#2 ~_ #3 In I l l  -1- /Zd-/]2 -F ~ l l  ,+.~2 

+ m [ 1  - + 
~d 

~ + 1 + #~-~ 

The corresponding relations for the s electrons are 
found to be 

Jxs = 3[a0sdsEx - o~s~Ey] (26) 

J ,  = -~[aosa~M~Ex + d~Ey] (27) 

where ao~ is the part of the background conductivity 
associated with the s electrons. The relations for the 
functions ~'~ and ~ are the same as in Equations 24 
and 25 except that we must substitute the subscript s 
for the subscript d and we must bear in mind that the 
size parameter 

d 1 
#s - (28) 

20s In (1/p) 

and the field parameter ~ 

ell'Cos 
~ - ( 2 9 )  

ms 

differ respectively as #0 and ~0. 
It is now possible to write the expressions for the 

components Jx and Jp of the total electrical current 
density; they are 

Jx = {[(aoddo + ao~d~)Ex + Ee(adaOdYda - cqO'os~)] 

(30a) 

Jy = 3[(~saOs,~ -- %aOd~d)Ex + Ey(aO~dO + Oo~¢~)] 

(30b) 

This paper is essentially concerned with the investi- 
gation by means of the two-band model of the size 
effect in the Hall coefficient of thin films of metals in 
which there are two overlapping bands with emphasis 
on a comparison of the theoretical predictions in the 
free-electron model [26-29] and in the two-band 
model. Because the Hall coefficient is defined as the 
ratio [21, 26] 

Ey 
Rm - ~ ;J, =o (31) 

using the relations for the functions ~ and Ni 
(i = s, d) together with the relations for the field 
parameters ei and the contributions a0~ to the bulk 
conductivity, from Equation 31 one obtains 

21 
RHf --  3 e 

?Id ns 
X {[ aoddo 

]2} 
+ O'Os'5~ts] 2 + - -  "~d - -  - -  Ms 

L nd ?Is 

(32) 
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whereas the Hall coefficient of  the bulk material for 
the case of a magnetic field of  arbitrary magnitude is 
given by [21] 

L F/d F/s 

1 
RH0 ~ -- 

e 

X 

(O'Os + O'Od) 2 + ~ ~" O'OsO'Od 
n s nd 

(33) 

It is convenient [21] in order to discuss more easily 
the size effects in the Hall coefficient of transition 
metal films and especially to focus attention on the 
changes in the thickness dependence of  RHr with the 
temperature, T, to write the background conductivity 
associated with each band in the forms 

O'0s = Xao,  %d = ( 1 -  X)ao (34) 

where a0 is the conductivity of  the bulk material and 
x corresponds to the fraction of  total electrical current 
which is carried by the s band. Effectively, it is gener- 
ally usual [21] to account for the temperature vari- 
ation of  RH0 by allowing x to vary with temperature. 

If, moreover, we consider the more general case 
where the numbers of the s and the d carriers differ, 
and introduce the parameter 

y = n s / n  d (35) 

the expression for the Hall coefficient, Rm, of  a thin 
sample becomes 

1 2 
RHf -- 

e 3n s 

x 

(1 - -  x ) 2 y ~ d  - -  X2~s 

E 12 2 (1 - x) 2 Y~'d - xN~ 
[(1 - x)..~d + x ~ ]  ~ + ~s x • 

(36) 

and involves parameters ~s, ns, ks = d/2os associated 
only with the s band, because the field parameter, ad, 
and the mean free path, 20d, can be now rewritten in 
terms of x and y. 

Now the corresponding expression for the Hall 
coefficient of  the bulk material is 

1 1 [(1 -- x)2y--  x 21 + e~[(1 --y)y(1 -- x) 2] 
RH0 - -  e ns 1 4- c¢2(1 -- x)2(1 -- y)2 

(37) 
To get a general idea of the results it is sometimes 

assumed that ns = nd [21] following this procedure, 
and putting y = 1 into Equations 36 and 37 the ratio 
of  the Hall coefficient for a film of  a transition metal 
to that of the bulk material reduces to 

2 1 
Rwr/RHo - 

31 - 2 x  

(1 - X)ZBd -- x2~  
x 

2 [ ( 1  - x )  2 
[(1 - x ) d d  + x ~ ]  ~ + ~ L x - -  ~ d  - X ~ s ]  2 -1 

(38) 

because in this particular case the bulk Hall coef- 
ficient, RH0, remains independent of H. 

2.3.  D i s c u s s i o n  of t heo re t i ca l  resul ts  
The expressions for the Hall coefficient may be evalu- 
ated with the aid of  no more than a pocket calculator. 
The Hall coefficient ratio, Rm/RH0, and the Hall coef- 
ficient, R.0, of the bulk material were evaluated assum- 
ing that the field parameter, ~s, associated with the s 
band takes a constant value of  0.01. An impression of 
the influence of  the adjustable parameters x and y 
can be obtained from Figs 2 and 3 where we have 
plotted curves of the calculated Hall coefficient ratio 
(Equations 36 and 37) as a function of the reduced 
thickness ks at p = 0.75. In each figure the varying 
parameter for the different curves is x while the par- 
ameter y is kept constant in the range 0.5 to 2. 

In comparing the results displayed in Figs 2 and 3 
with the predictions of  one carrier models [26-29] it is 
clear that there are several interesting differences. 

1. The one-carrier model based on the Cottey 
model [29] gives a decrease of  the ratio RHf/RHo as the 
film thickness is increased. The classical F-S theory 
[26] predicts that in the vicinity of k = 1 the Hall 
coefficient ratio falls below that of the bulk; however, 
this effect is only a few per cent so that it is, in general, 
ignored. Thus the essential feature of the one-carrier 
models remains the quasi-monotonic decrease of  RHf 
to RH0 with increasing values of  film thickness. As we 
see, at moderately high ks the present model gives an 
opposite dependence on d with a Hall coefficient RHr 
which is less than that in the limit ks ~ ~ .  The fact is 
that over the ks range investigated here we find in most 
cases a Hall coefficient minimum, [Rnf/RHo]=i,; the 
value of  [Rm/RHo]mi, as well as its position [ks]min 
depending on the parameters x and y. 

2. The plots of  RHf/Rr~o against the reduced thick- 
ness ks at p = 0.5 are collected in Fig. 4 for some 
typical values of .the parameters x and y. One can see 
that at first sight the influence of the specularity 
parameter, p, is particularly marked in the region 
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Figure 2 The Hall coefficient ratio, RHf/RHo , plotted against the 
reduced thickness, k~, assumingp = 0.75 and y = 0.5. (a), (b), (c), 
(d), (e) Theoretical curves for the respective x values of  0.88, 0.69, 
0.55, 0.45 and 0.3. (h) Theoretical Cottey curve for p = 0.75 [29]. 
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Figure 3 The Hall coefficient ratio, RHf/RHo, plotted against the 
reduced thickness, k~, assuming p = 0.75 and y = 2. (a), (b), (c), 
(d), (e) Theoretical curves for the respective x values of  0.88, 0.69, 
0.55, 0.45 and 0.3. (h) Theoretical Cottey curve fo rp  = 0.75 [29]. 

corresponding to very thin films. Moreover an obvious 
result of  the two-band model is the more or less pro- 
nounced shifting of the Hall coefficient minimum to 
higher k~ values asp  decreases. This movement  is more 
conveniently illustrated in Table I where some tabu- 
lations concerned with RHr/RHo have been inserted. 
From an experimental point of  view this feature may 
become important.  Effectively one might imagine the 
same type of movement  could occur for any values of  
x and y so that as p is lessened we can see either an 
increase or a decrease in RHf/RHo. Let us recall that 
changes in the transport  properties of  thin films with 
annealing can be partially ascribed [3, 30-35] to a 
mechanical reordering of the external film surface 
which evidently induces an increase in the specularity 
parameter  p. Hence, care must be taken that as the 
RHf/RHo against k~ plots for different values o f p  cross 
each other, the size effect can be considered as singular 
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Figure 4 The Hall coefficient ratio, RHf/Rno, plotted against the 
reduced thickness, k~, assuming p = 0.5. (a), (b), (c) Theoretical 
curves for y = 1 and for the respective x values of  0.3, 0.55 and 
0.88. (A), (B), (C) Theoretical curves fory  = 2 and for the respective 
x values of  0.3, 0.55 and 0.88. (h), (i) Theoretical Cottey curves for 
the respective p values of  0.75 and 0.5 [29]. 

T A B L E  I Numerical values of  the reduced Hall coeffÉcient, 
RHf/RHo, calculated for y = I according to Equation 38 

k S x = 0 . 4 5  x = 0.55 

p = 0.9 p = 0.75 p = 0.5 p = 0.9 p = 0.75 p = 0.5 

0.01 0.8595 1.1632 1.7176 0.8265 1.0806 1.5578 
0.02 0.7746 0.9267 1.2524 0.7640 0.8811 1.1569 
0.04 0.7591 0.8028 0.9775 0.7645 0.7830 0.9232 
0.08 0.7911 0.7589 0.8272 0.8058 0.7578 0.8012 
0.I 0.8076 0.7580 0.7989 0.8237 0.7617 0.7800 
0.2 0.8649 0.7852 0.7854 0.8811 0.7991 0.7581 
0.4 0.9164 0.8388 0.7742 0.9286 0.8557 0.7861 

for some typical measuring temperatures (MT) as soon 
as we are concerned with films annealed at various 
annealing temperatures (AT). 

Equation 37 related to the bulk material can easily 
interpret some complicated processes such as the 
inversion temperature at which the Hall coefficient, 
RH0, of  a semimetal changes sign. In practice this is 
usually attributed to a variation of the parameter  x 
with temperature. Because this typical behaviour is 
also met [10, 12] in thin samples of  semimetal at 
specific MT, it is interesting to investigate if we are 
able to determine the ranges of  values of  x and y for 
which the theoretical Hall coefficient of  thin films 
shows a change from positive to negative or vice versa 
with increasing film thickness. Looking back to Equa- 
tion 37 we see that the Hall coefficient of  bulk material 
changes its sign for critical values of  x and y, denoted 
for convenience xo and Yc, satisfying approximately 
the relation 

Yo = [Xc/(1 - xo) ]  2 (39)  

We believe that we can use values close to xc and Yo to 
determine the expected behaviour. Further confir- 
mation comes from Fig. 5 which illustrates at a fixed 
xc the variation of  the Hall coefficient ratio, RHf/RHo, 
with the parameter  y for different values of  the 
reduced thickness ks. As expected, the sign of the Hall 
coefficient ratio changes rapidly as the parameter  y 
passes through the critical value Yc. Moreover the 
range of y values where the reduced Hall coefficient, 
RHf/Rxo, falls to a negative value depends markedly 
on the film thickness. We can also plot RHf/Rho~ against 

[ \ 

- \ 

0.1 yc0.2 0.3 
Y 

Figure 5 The Hall coefficient ratio, RHf/RHo, plotted against the 
parameter y for different values of  the reduced thickness, ks, assum- 
ing x = 0.3 and p = 0.75. (a), (b), (c) Theoretical curves for the 
respective k s values of  0.01, 0.1 and 1. 
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Figure 6 The Hall coefficient ratio, RHr/RHo~, plotted against the 
parameter  x for different values of  the reduced thickness, k,, assum- 
ing y = 0.5 and p = 0.75. (a), (b), (c) Theoretical curves for the 
respective k~ values of  0.01, 0.1 and 1. Inset: variation o f  Rnf/Rno ~ 
for x in the vicinity ofx~ = 0.414. 
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x at a fixed critical yo (Fig. 6) where RH0s is the absolute 
value of the bulk Hall coefficient when we neglect the 
effect on the transport properties of adding d-like 
carriers to a metal (i.e. RH0~ = 1/en~). The results 
undoubtedly indicate that the Hall coefficient reverses 
its sign with increasing film thickness in a small range 
of x around xc. It can be seen that in this range the 
Hall effect is indeed small, it has the sign of  conduc- 
tion by holes for thinner films and leaves the hole-like 
sign for thicker films. 

3. Discussion of experimental  results on 
bismuth and conclusions 

As noticed in Section 1 there is a relatively large 
number of papers [7-17] dealing with experimental 
studies of the Hall effect in thin samples of  transition 
metals or of a semimetal such as bismuth. In most 
cases the fundamental origin of  the size effect has 
remained far from complete. This is at least partially 
due to the lack of a coherent set of experimental data. 
In various papers the relevant properties were not 
measured in the same material so that, except for 
bismuth [7-14], it is difficult to obtain an overall pic- 
ture. Effectively it is possible to collect a set of  dif- 
ferent experimental data on the electrical properties of 
bismuth films which can be analysed in the framework 
of the present model. 

At this point it should be noticed that the two-band 
model gives the ratio RHf/RHos. Hence, before a com- 
parison between this theoretical work and previous 
experimental works [7-14] is carried out, a corrective 
factor, cg, must be chosen, which constitutes a measure 
of the magnitude of liens. After a rapid comparison of 
published data we have decided, in order to obtain a 
general correlation between the various experimental 
works, to use the same c# for results at the measuring 
temperature (MT) of about 80 K. Further the correc- 
tions at different MT are calculated using published 
values [13, 19] of the ratio N(MT)/N(8OK), N(MT) 
being the number of carriers per unit volume at MT 

Figure 7 (a) Theoretical fit of  published data (m) on bismuth films 
for MT = 7 7 K  [11] a s sumingp  = 0.9 and 20s = 1 #m. (a), (b), (c) 
Theoretical curves for x = 0.55 and for respective y values of  2.1 
and 0.5. (A), (B) Theoretical curves for x = 0.55 and for respective 
y values o f  1 and 0.5. d is the theoretical curve for x = 0.4 and 
y = 0.7. (b) Experimental determination of the parameters x and y 
for data (m) on bismuth films [11] and for MT = 77 K. (a), (b) 
Theoretical curves for y = 0.7 and for respective x values of  0.39 
and 0.4. (A), (B) Theoretical curves for y = 1 and for respective x 
values of  0.445 and 0.447. 

assuming the carrier concentrations are the same for 
the two bands. This procedure provides theoretical 
values of RHf. 

First let us consider experimental works [11, t2] 
concerned with one of the characteristic situations for 
the Hall coefficient outlined in the preceding section so 
that one-band models fail partly to explain the observed 
size effects in Rm. Garcia et al. [11] studied the thick- 
ness dependence of the resistivity, the Hall coefficient 
and the magnetoresistance of thin bismuth films con- 
sisting of  identically oriented crystallites. After a 
detailed examination of their data Garcia et al. argued 
that the electron mean free path could be estimated to 
be around 10 .2 and 10 -3 times that in the bulk. 
Taking into account this last argument and the fact 
that because the films were very carefully annealed the 
surface scattering is not great enough to be essentially 
significant [3], tentative assumptions are made to fit 
their data at 77 K in the form Ruf against k0s (Fig. 7a) 
assuming 20s = 0.5 #m andp  = 0.9. Clearly a reason- 
able fit of  the thickness dependence of  the Hall coef- 
ficient of films at 77 K is obtained only for either 
y = 1 and x near 0.45 or y = 0.7 and x near 0.4. We 
have now to adjust the parameter x. It can be seen in 
Fig. 7b that the theoretical curves for x = 0.447 and 
y = 1 and for x = 0.395 and y = 0.7 may represent 
accurately the data for d > 40nm but at smaller 
values of d there is a discrepancy. Because at 
d < 40 nm the size of  crystallites depends on the film 
thickness, the value of  the bulk mean free path of  
0.5 #m cannot still be valid for the whole thickness 
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3 Figure 8 (a) Theoretical fit of pub- 
lished data on bismuth films by Inoue 
et aL [121 for MT = (I) 80K and (A) 
300 K and by Kochowski and Opilski 
[101 for MT = (O) 80K and (0) 
293 K. (a), (b) Theoretical curves for 
p = 0.5, y = 0.5 and for respective x 
values of 0.42 and 0.45. (A), (B), (C) 
Theoretical curves for p = 0.9. y = 
0.5 and for respective x values of 0.4, 
0.42 and 0.45. (b) Experimental deter- 
mination of the parameter x for data 
(A) on bismuth films [12] and for 
MT = 80 K. (a), (b), (c) Theoretical 
curves for p = 0.7, y = 0.5 and for 
respective x values of 0.42, 0.445 and 
0.447. (c) Experimental determination 
of the parameter x for data (i)  on 
bismuth films [12] and for MT = 
300 K. (a), (b) Theoretical curves for 
p = 0.7,y = 0.5 and for respective x 
values of 0.416 and 0.418. 

range investigated here, and thus some deviations may 
be expected for thinner films. 

Inoue et al. [12] obtained an interesting set o f  
experimental data  on the Hail effect in polycrystalline 
bismuth films at M T  ranging f rom 80 to 300 K: (i) at 
MT = 80 K RHr is always negative and its absolute 
value increases with d;  (ii) for M T  = 300 K a reversal 
o f  the Hall coefficient is observed, RHf is negative for 
thicker films and becomes positive at d < 50nm. 
Inoue et al. argued the presence o f  local acceptor  
states to explain the temperature dependence of  the 
Hall coefficient. 

Because the introduct ion of  acceptor  levels near the 
top o f  the hole band  will cause a reduction in the 
number  o f  electrons and an increase in the number  o f  
holes, the parameter  y will no longer be equal to 1. I f  
we repeat the above procedure to compare  the theor- 
etical plots o f  RHr against k+ (Fig. 8a) with the experi- 
mental  da ta  at 80 and 300 K, we observe that  the 
thickness dependence o f  RHr can be qualitatively 
described in terms of  the two-band model  with 
y = 0.5 and with x, respectively, near 0.45 and 0.42. 
We note that a value o f  0.5 for y is by no means 
unreasonable if the acceptor  states are responsible for 
the reduction in the number  o f  electrons. Adjusting 
the value for x at M T  = 8 0 K  (Fig. 8b) and at 
M T  = 3 0 0 K  (Fig. 8c) the proposed model  gives a 
reasonable qualitative agreement with experiments 
even if at 300 K the theoretical magni tude  o f  RH 
remains too  small. In particular, it appears that  the 
theoretical and experimental reversals o f  RHf occur 
approximately at the same thickness. If, however, a 
correction for the factor  cg is accepted it is possible to 
arrive at a fair fit o f  data.  But it seems more  appro-  
priate to note that  the bismuth films have a fine- 
grained structure and thus we may  partially ascribe 
the deviations to scattering at grain boundaries.  

We now turn our  at tention to previous works 
[10, 13] for which at tempts to fit da ta  in terms of  the 
classical F -S  model  can, at first sight, be made.  Hoff- 
man  and Frankl  measured [13] at M T  = 4 . 2 K  the 
Hall coefficient o f  well-ordered bismuth films: the Hall 
coefficient has the sign o f  the conduct ion  by holes and 

decreases with increasing thickness. Because the films 
were deposited at 330 K and then annealed at the same 
temperature for only ~ h the anneal is certainly not  

2 ' 

complete and one can reasonably assume partially 
diffuse surface scattering (i.e. p ~ 0.6 at M T  = 
300K [13]). Thus assuming p = 0.5 at MT = 4 . 2 K  
and retaining for 2os the value o f  8/~m determined 
earlier by Hof fman  and Frankl  [13], a qualitative and 
quantitative agreement between the theoretical and 
experimental results is obtained for the two following 
sets o f  x and y values 

x - 0.47 and y = 1 

x - ~  0.43 and y = 0.7. 

The discrepancies between theory and experiment do 
not, in general, exceed 5% except for the thickest film 
for which a more  serious departure  o f  about  30% is 
observed. Thus the correct  choice for x and y remains 
difficult because firstly we note that  the value of  1 for 
y agrees with the c o m m o n  assumption that  in pure 
bulk bismuth the concentra t ion o f  holes is equal to 
the concentra t ion of  electrons [19], and secondly we 
believe that  for films suffering an anneal during a short  
time, impurities may  play a role in determining the 
value for y. 

Also interesting is the study for thin evaporated 
bismuth films made by Kochowski  and Opilski [10] 
where the dependence of  the Hall coefficient on thick- 
ness is essentially determined by the value o f  the 
measurement  temperature.  In fact at MT = 293 K, 
RHf was found to be practically independent o f  d 
whereas at MT = 80 K obvious similarities between 
the works on the Hall effect in bismuth films by Inoue 
et al. [12] (see Figs 8a, b) and by Kochowski  and 
Opilski [10] were observed. Hence assuming again that  
y = 0.5, the experimental behaviour  o f  R~r as a func- 
tion o f  d at 80 K conforms nearly to the theoretical 
features obtained for x = 0.45 and p = 0.7. A 
reanalysis of  the data  at 293 K with x = 0.4 shows 
that  the calculated and the experimental values o f  RHr 
are o f  comparable  order o f  magni tude over a very 
large thickness range. 
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T A B L E  II  Values of  x and y calculated in the framework of  
the two-band model using data from the literature; when possible, 
alternative values of  x and y are also indicated 

x y MT (K) Reference 

0.47 or 0,43 1 or 0.7 4.2 [13] 
0.447 or 0.39 1 or 0.7 80 [11] 
0,447 0.5 80 [12] 
0.45 0.5 80 [10] 
0.4 0.5 293 [10] 
0.418 0.5 300 [ ]2] 

All the values of parameters x and y obtained from 
these reanalyses of previous experiments are collected 
in Table II. At this point it appears to be necessary to 
use another simple experimental test to establish the 
validity of the model. We can, for example, compare 
values of the background carrier mobility previously 
published in the literature [7, 10, 19] with the present 
ones. For this purpose, as usual for bismuth, let us 
denote n, the number of electrons (i.e. n corresponds 
to n~ in Equation 32) and p, the number of holes (i.e. 
p = rid). It readily appears from Equations 34 and 35 
that the ratio, #p~o//~o, of the hole mobility to the 
electron mobility is expressed as 

~,~/~.~ = y ( 1  - x)/x ( 4 0 )  

for an infinitely thick film. The actual values of the 
mobility ratio are also listed in Table II. If we compare 
our values with data selected from the literature [7, 10, 
19] (Table III), it will be seen that our results in no way 
seem unreasonable. Firstly, we note that there is a 
relatively large scatter between the results from differ- 
ent authors; this situation reflects some uncertainties 
in determining the electrical properties of an infinitely 
thick film. For example, from the work on single 
crystal of bismuth by Abeles and Meiboom [19] the 
mobility ratio was found firstly to be always smaller 
than 0.5 and secondly to increase slightly with increas- 
ing MT. This last feature, although more pronounced, 
was also observed by Asashi and Kinbara [7] but the 
quantitative result at 77 K of their analysis (Table III) 
disagrees with that of Abeles and Meiboom. Our results 
give a mobility ratio whose variation with measure- 
ment temperature follows the expected behaviour. 
Moreover, at 80 K, our values as evaluated from [10] 
and [12] lie midway between the values quoted by 
other authors [7, 19]. 

However, to assess the validity of the present model 
several other remarks can be made. 

1. When available for films prepared and annealed 
under the same conditions, the study of the thickness 
dependence of R,f  at various MT gives, at a fixed y, a 
value of x which decreases moderately with increasing 
MT, in agreement with the work of Abeles and Mei- 
boom (Table II). 

2. The present model has the advantage to be cap- 
able of explaining qualitatively the reversal, at a fixed 
MT, of the sign of  the Hall coefficient which occurs 
with increasing thickness. 

3. The two-band model is, to our knowledge, 
the only model which gives a fair agreement with 
experiment when the observed size effect is just oppo- 
site to that predicted by the classical F-S theory, i.e. 

T A B L E  I I I  Values of  the mobility ratio, #p~/#,~,  as deter- 
mined from the present model using data from the literature, For 
comparison, previously published values for the mobility ratio are 
also given 

#p~o//l~o~ MT (K) Reference 

Calculated Published 

1.127 or 0.927 - 4.2 [13] 
1.237 or 1.09 - 80 [1 I] 
0.618 - 80 [12] 
0.611 - 80 [10] 
0.75 - 293 [10] 
0.696 - 300 [12] 

- 0.615 4.2 [7] 
- 0.864 77 [7] 
- 0.432 80 [19] 
- 0.472 300 [19] 

when the Hall coefficient increases with increasing 
thickness. 

We can thus conclude that the model proposed here 
is the simplest one, giving a reasonable agreement with 
experiments. However, because a two-band model 
involves at least four important physical parameters, 
namely x, y, 2o and p, the following points must be 
taken into account. 

1. A serious analysis of the role and an identification 
of the nature of frozen-in impurities is necessary to be 
able to establish the relative importance of impurities 
in the transport properties of thin films and to make 
a meaningful estimate of the parameter y. 

2. The morphology of films needs to be carefully 
analysed in order to determine the size of crystallites 
when present. This point is essential to evaluate the 
background mean free path. 

3. Because both the average grain size and the con- 
centration of impurities may vary with film thickness, 
the simplest experimental procedure to estimate the 
changes of the parameter x with temperature is to 
perform measurements of the Hall effect on the same 
thoroughly annealed film whose morphology is known. 

Tables II and III show that we have not completely 
succeeded in placing the qualitative correlation between 
theory and experiments on a quantitative basis. We 
can "force" the present model to fit the data by an 
appropriate choice of x, y, 2o nd p, but in view of the 
preceding remark it does not seem fruitful to speculate 
about such refined choices. 
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